L-tartaric acid synthesis from vitamin C in higher plants.

نویسندگان

  • Seth DeBolt
  • Douglas R Cook
  • Christopher M Ford
چکیده

The biosynthetic pathway of L-tartaric acid, the form most commonly encountered in nature, and its catabolic ties to vitamin C, remain a challenge to plant scientists. Vitamin C and L-tartaric acid are plant-derived metabolites with intrinsic human value. In contrast to most fruits during development, grapes accumulate L-tartaric acid, which remains within the berry throughout ripening. Berry taste and the organoleptic properties and aging potential of wines are intimately linked to levels of L-tartaric acid present in the fruit, and those added during vinification. Elucidation of the reactions relating L-tartaric acid to vitamin C catabolism in the Vitaceae showed that they proceed via the oxidation of L-idonic acid, the proposed rate-limiting step in the pathway. Here we report the use of transcript and metabolite profiling to identify candidate cDNAs from genes expressed at developmental times and in tissues appropriate for L-tartaric acid biosynthesis in grape berries. Enzymological analyses of one candidate confirmed its activity in the proposed rate-limiting step of the direct pathway from vitamin C to tartaric acid in higher plants. Surveying organic acid content in Vitis and related genera, we have identified a non-tartrate-forming species in which this gene is deleted. This species accumulates in excess of three times the levels of vitamin C than comparably ripe berries of tartrate-accumulating species, suggesting that modulation of tartaric acid biosynthesis may provide a rational basis for the production of grapes rich in vitamin C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

l-Ascorbic Acid Metabolism in Vitaceae: Conversion to (+)-Tartaric Acid and Hexoses.

The metabolic fate of l-ascorbic acid-1-(14)C and -6-(14)C has been investigated in two species in two genera of Vitaceae. Results suggest that ascorbic acid metabolism in the Vitaceae involves splitting the 6-carbon chain into 4- and 2-carbon fragments. The former, corresponding to C1 through C4 of ascorbic acid, is further oxidized to tartaric acid while the latter, corresponding to C5 and C6...

متن کامل

A Crystallization-Induced Asymmetric Transformation using Racemic Phenyl Alanine Methyl Ester Derivatives as Versatile Precursors to Prepare Amino Acids

L-Tyrosine and L-Dopa are the precursors in the biological synthesis of amine neurotransmitters. On the other hand, phenylalanine as an aromatic amino acid (AAA) is a precursor in the synthesis of L-Tyrosine and L-Dopa. For some substrates such as amino acids, resolution by the formation of diastereomers offers an attractive alternative. Among different methods in this case, crystallization-ind...

متن کامل

Synthesis of l-(+)-Tartaric Acid from l-Ascorbic Acid via 5-Keto-d-Gluconic Acid in Grapes.

5-Keto-l-idionic acid ( identical with5-keto-d-gluconic acid, d-xylo-5-hexulosonic acid) was found as a metabolic product of l-ascorbic acid in slices of immature grapes, Vitis labrusca L. cv ;Delaware'. Specifically labeled compounds, recognized as metabolic products of l-ascorbic acid in grapes, were fed to young grape tissues to investigate the metabolic pathway from l-ascorbic acid to l-(+)...

متن کامل

Improving growth, yield and fruit quality of strawberry by foliar and soil drench applications of humic acid

Organic compounds including seaweed extract were applied in organic production system and sustainable agriculture. One of these compounds is humic acid that was used widely in research and commercial programs. Humic acid is an organic acid obtained from humus and other natural resources with hormonal effects and improving nutrient absorption, increasing root and shoot biomass. In order to inves...

متن کامل

D-tartaric acid: a novel catalyst for green and efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones by Biginelli reaction under solvent-free conditions

D-tartaric acid is successfully used as a green and efficient catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. The developed method has many advantages, including devoid of harmful catalyst and solvents, high yield and easily work-up.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 14  شماره 

صفحات  -

تاریخ انتشار 2006